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An Online Algorithm for Detecting and Tracking
the Muscle Contraction Levels with EMG Signals

Kaan Gokcesu, Hakan Gokcesu, Erhan Ertan, Mert Ergeneci,

Abstract—Objective: Our objective in this work is the esti-
mation of the muscle contraction levels (how much the muscle
is contracted), because of its importance in especially gesture
recognition, biomechanics, exoskeleton and prosthesis control.
Methods: One widely used approach in the literature is the
detection of certain waveform patterns in the signal behavior to
detect muscle contractions. However, these approaches generally
need specific waveforms beforehand and prone to have poor
performance under stochastic environments. Another approach
is the successive thresholding of certain features of the captured
EMG signal. However, most of these features can have erroneous
modeling of the EMG signal under low SNR and high interference
scenarios (such as PLI). To this end, we propose an algorithm for
the detection and tracking of the muscle contraction levels that
incorporates methods of convex optimization and expert mixture.
Results: For the first time in literature, we introduce an algorithm
that has guaranteed performance bounds. Conclusion: Because
of its performance bounds, our algorithm is robust under noisy,
chaotic or even adversarial environments. Significance: Our work
provides a significant tool for use especially in sports science,
rehabilitation, medicine and human-machine interface, where the
detection and tracking of the muscle contraction levels are of
paramount importance.

I. INTRODUCTION

The analysis of the muscle information with the evaluation
and acquisition of the activation potentials through elec-
tromyography (EMG) has gained wide popularity [1]. EMG
technique is applicable to a wide range of applications includ-
ing but not limited to sports science and rehabilitation [2]–[10],
medical diagnosis [11]–[14], human machine interaction and
gesture recognition [15]–[19].

While the EMG technology provides valuable data by
itself, its analysis is of paramount importance. Specifically,
the amount EMG signals, the detection of contractions and
the level of the contractions (i.e., how much the muscle
is contracted) are especially useful in gesture recognition,
muscle fatigue analysis and muscle power development [19]–
[22]. To estimate and track the muscle contraction levels,
an unsupervised learning approach is necessary since the
contraction times and levels need to be inferred directly from
the acquired EMG signals.

There are various approaches in the literature to detect and
track the amount of contractions. One school of thought is to
detect certain patterns in the biological signals (such as EMG,
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ECG). There are various QRS detection techniques, which
consists of thresholding the signal in a successive manner to
capture some specific behavior. These approaches generally
embed some sort of transform (such as the derivative) to
account for the nonlinearity. In [23], [24], the derivative is
approximated with a first order difference on the discrete
samples. In [25], the authors model the derivative with the
difference of the output signal after a low-pass filter. Another
approach is to use a Finite Impulse Response (FIR) filter
to model the derivative [26]. All of these methods have
nonnegative outputs similar to a full-wave rectified signal,
which is than passed through some thresholds for estimation.
Moreover, in [27], the authors propose an algorithm that passes
the Wavelet Transform of the signal through a matched filter to
detect the muscle contractions. Nonetheless, these algorithms
are able to recognize the patterns in the signal with a priori
knowledge of the specific waveform (consequently they may
have poor performance in stochastic environments).

Because of this reason, the general approach has moved
away from the detection of patterns in the EMG for detection
and tracking of the muscle contractions. It has become popular
to use some thresholds on certain features, which are extracted
from the EMG signal observations (these metrics/features
generally summarize the signal properties). These metrics
include Mean Absolute Value (MAV), Variance (VAR), Root
Mean Square (RMS), Waveform Length (WL), Zero Crossing
(ZC), Slope Sign Change (SSC), Discrete Wavelet Transform
(DWT), Wavelet Package (WPT), Mean Frequency (MF),
Median Frequency (MDF), Peak Frequency (PF), Mean Power
(MP), Total Power (TP), Higuchi’s Fractal Dimension (HFD),
Detrended Fluctuation Analysis (DFA), Shannon Entropy (SE)
[28]–[32]. However, most of these metrics, especially the
features related to the signal’s spectral behavior can have
erroneous modeling of the EMG signal under low SNR and
high interference scenarios (such as power line interference,
i.e., PLI [33]).

To this end, we model the muscle contractions as Gaussian
processes. Since, in noisy environments (especially PLI), pa-
rameters can be estimated erroneously, we propose an adap-
tive algorithm that requires no pre-estimation or calibration
in the beginning. Moreover, to account for the noise and
interference in the environment, our approach works in an
individual sequence manner and has theoretical guarantees on
its performance bounds. This way, our algorithm is robust even
under chaotic or adversarial environments.

The organization of the paper is as follows. In Section II,
we provide some necessary preliminaries about the problem
at hand. In Section III, we first provide an algorithm that can
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estimate the power level in a single contraction. In Section IV,
we propose our main algorithm which can accurately detect the
contractions in a sequentially received EMG signal. In Section
V, we provide some insights on our performance bounds and
finish with some concluding remarks.

II. PRELIMINARIES

In this paper, we are dealing with the problem of detecting
and tracking the contraction levels in a sequentially observed
EMG signal in real time.

A. EMG Signal Modeling as a Gaussian Process

We formally define our problem by first modeling the
EMG signal. An observed EMG signal can be mathematically
modeled as the following:

xt = yt + vt, (1)

where yt is the Muscle Activation Potential (MAP) and vt is
the noise at time t. Our aim is to track the contraction level
in xt at time t.

We estimate the contraction level of a muscle using its
muscle activation potential yt. However, there is no guarantee
that the muscle signals will be present at each observation
(there may be times when the muscle is not in contraction).
Hence, if there is no contraction at time t, then the observation
will simply be given by xt = vt. We model the muscle signal
yt and the noise vt as independent zero-mean Gaussian random
variables. Consequently, xt is also a zero-mean Gaussian
random variable. Let

xt ∈ [−1, 1] (2)

be the sample observed at time t.
We model xt as a zero-mean Gaussian random variable with

variance σ2
t , i.e.,

xt ∼ N (0, σ2
t ). (3)

From (1), we see that σ2
t will be at least the noise variance

(i.e., the variance of vt) σ2
N , i.e.,

σ2
t ≥ σ2

N . (4)

Moreover, from the range of xt in (2), we have

σ2
t ≤ 1. (5)

B. Log-loss Analysis

Our aim is to estimate the variance σ2
t at time t (which

corresponds to the power of the sEMG signal). Since we
model the observations as Gaussian random variables, we
adopt a maximum likelihood based approach and maximize
the probability of the observations. Based on our variance
estimation at time t, let the estimated density function be ft(·).
Thus, the probability of observing xt in our model will be

ft(xt) =
1√
2πσ2

t

exp

(
− x2t
2σ2

t

)
, (6)

since we model the observations as in (3). We measure
our performance with the log-loss since minimizing log-loss

corresponds to the maximization of this likelihood. Thus, at
time t, we incur the loss

lt(σ
2
t ) = − log(ft(xt)), (7)

=
x2t
2σ2

t

− 1

2
log

(
1

σ2
t

)
+

1

2
log(2π). (8)

C. Performance Analysis and the Notion of Regret

Suppose we have C contractions in total that start at times
ta,c and end at times tb,c for c ∈ {1, 2, . . . , C}. Thus, in total,
the number of time segments are upper-bounded by 2C + 1,
which consists of either all contraction samples or all noise
samples.

Let ts for s ∈ {1, 2, . . . , 2C+1} be the length of such time
segment. Based on whether or not a specific time segment
corresponds to a contraction, and if it does, the level of that
contraction, we have an optimum variance estimation σ2

s,∗.
Let st be the segment number of the time index t (hence,

s1 = 1 and sT = 2C+1). Then, the log-loss of these optimal
estimations are given by

lt(σ
2
st,∗) =

x2t
2σ2

st,∗
− 1

2
log

(
1

σ2
st,∗

)
+

1

2
log(2π). (9)

Our goal is to minimize the log-loss difference between our
estimations σ2

t and the optimal estimations σ2
st,∗. Thus, we

want to minimize the following notion of ‘regret’

rt , lt(σ
2
t )− lt(σ2

st,∗), (10)

or more specifically the cumulative regret for the time horizon
T , which is given by

RT ,
T∑
t=1

rt, (11)

=

T∑
t=1

lt(σ
2
t )− lt(σ2

st,∗). (12)

We will analyze the regret results in terms of its complexity
with the widely used asymptotic notations.

D. Asymptotic Notations for Complexity Analysis

We first provide two asymptotic notations, which will be
useful in our analysis.

1) Big-O Notation: Let T go to infinity, hence, T → ∞.
Let f(T ) and g(T ) be functions of T . If

f(T ) ≤ cg(T ), (13)

for some constant c, we say that

f(T ) = O(g(T )). (14)

2) Soft-O Notation: Let T go to infinity, hence, T → ∞.
Let f(T ) and g(T ) be functions of T . If

f(T ) ≤ cg(T ) logk(g(T )), (15)

for some constant c and k, we say that

f(T ) = Õ(g(T )). (16)
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III. ESTIMATING A SINGLE CONTRACTION LEVEL

In this section, we first create an algorithm that can ac-
curately estimate a fixed contraction level. Let our variance
estimation (which corresponds to the power level) at time t
be σ2

t and let the optimum fixed variance for the whole time
horizon T be σ2

∗. At time t, the incurred losses are

lt(σ
2
t ) =

1

2

x2t
σ2
t

− 1

2
log

(
1

σ2
t

)
+

1

2
log(2π), (17)

lt(σ
2
∗) =

1

2

x2t
σ2
∗
− 1

2
log

(
1

σ2
∗

)
+

1

2
log(2π). (18)

We utilize a change of wearables which will make the under-
lying loss function consistently convex. Our estimation and
the optimum estimation are given by

θt ,
1

σ2
t

, θ∗ ,
1

σ2
∗
. (19)

Thus, from (17) and (19), we have the losses

lt(θt) =
1

2
x2t θt −

1

2
log (θt) +

1

2
log(2π), (20)

lt(θ∗) =
1

2
x2t θ∗ −

1

2
log (θ∗) +

1

2
log(2π). (21)

The first and second derivatives of our loss lt(θt) with respect
to the variable θt are given by

dlt(θt)

dθt
=

1

2
x2t −

1

2
θ−1t , (22)

d2lt(θt)

dθ2t
=

1

2
θ−2t . (23)

We use an Online Gradient Descent (OGD) [34]–[36] based
approach and update our estimation as follows

θt+1 = max

(
1,min

(
M, θt − ηt

(
1

2
(x2t − θ−1t )

)))
(24)

for some M > 1. Henceforth, our regret at time t is given by

rt,F ,lt(θt)− lt(θ∗), (25)

=
1

2
x2t θt −

1

2
log (θt)−

1

2
x2t θ∗ +

1

2
log (θ∗) , (26)

and the cumulative regret up to time T is

RT,F ,
T∑
t=1

lt(θt)− lt(θ∗), (27)

=

T∑
t=1

1

2
x2t θt −

1

2
log (θt)−

1

2
x2t θ∗ +

1

2
log (θ∗) . (28)

In the next theorem, we show our cumulative RT,F against a
fixed power level estimation σ2

∗ (or consequently θ∗) for the
time horizon T .

Theorem 1. When the update in (24) is done with ηt =
2M2

t
,

we have the following bound

RT,F ≤ M2(log T + 1), (29)

where M is an upper bound on θt, T is the time horizon and
RT,F =

∑T
t=1 lt(θt)− lt(θ∗).

Proof. The regret at time t is defined as

rt , lt(θt)− lt(θ), (30)

where lt(θ) is as in (20). Assume that for some H , lt(·) is
H-strong convex. Thus, the regret is given by

rt ≤gt(θt − θ)−
H

2
(θt − θ), (31)

where

gt ,
dlt(θt)

dθt
=

1

2
x2t −

1

2
θ−1t . (32)

We bound the first term in the right hand side of (31) using
the update rule (24). We have

|θt+1 − θ|≤ |θt − ηtgt − θ|,

since θt+1 is the result of a projection onto the closed convex
set [1,M ]. Hence, we get

(θt+1 − θ)2 ≤(θt − ηtgt − θ)2,
≤(θt − θ)2 − 2ηtgt(θt − θ) + η2t g

2
t . (33)

Since ηt > 0 for all t, rearranging (33) results in

gt(θt − θ) ≤
1

2ηt

(
(θt − θ)2 − (θt+1 − θ)2

)
+

1

2
ηtg

2
t . (34)

Putting (34) in the right hand side of (31) yields

rt ≤
1

2ηt

(
(θt − θ)2 − (θt+1 − θ)2

)
+

1

2
ηtg

2
t −

H

2
‖θt − θ‖2.

(35)

Thus, summing (35) from t = 1 to T , we have the cumulative
regret up to time T , which is given by

RT,F ≤
1

2

T∑
t=2

(
1

ηt
− 1

ηt−1
−H)(θt − θ)2

+
1

2
(
1

η1
−H)(θt − θ)2 −

1

2ηT
(θt − θ)2 +

1

2

T∑
t=1

ηtg
2
t ,

≤
T∑
t=1

g2t
2Ht

,

≤ 1

2H
(log T + 1),

where we used ηt = (Ht)−1 and gt ≤ 1. From (23) and the
fact that θt ≤ M , the second derivative of the loss function
lt(·) is lower bounded by 0.5M−2. Thus, we can set H =
0.5M−2. Hence, the regret becomes

RT,F ≤M2(log T + 1), (36)

which concludes the proof of the theorem.

From the definition of the notations in Section II-D, we
see that our regret bound on the log-loss against the best fixed
estimation is O(log(T )) and Õ(T ε) for all ε > 0. By an abuse
of notation we will write Õ(1). In the next section, we will
build upon this algorithm to estimate the contraction levels in
a sequentially received EMG signal.
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IV. ESTIMATING MULTIPLE CONTRACTION LEVELS

To estimate a varying number of (or multiple) contractions
in a sequentially received EMG signal, we run in parallel
the algorithm in Section III, which was able to track a fixed
variance or power level, and aggregate their results [37]–[39].

Let Nt be the number of parallel running algorithms at time
t. Then, we create our aggregated estimation θt as

θt =

Nt∑
i=1

wi,tθi,t, (37)

where θi,t is the estimation of the ith parallel running algo-
rithm and the weights wi,t are normalized versions (i.e., the
normalized weights) of the weights w̃i,t of the parallel running
algorithms, which are given by

wi,t =
w̃i,t∑Nt

j=1 w̃j,t
, (38)

so that wi,t creates a probability simplex at time t such that∑Nt

i=1 wi,t = 1.
We sequentially update the unnormalized weights w̃i,t with

a switching principle as

w̃i,t+1 =
t

t+ 1
w̃i,t exp(−λlt(θi,t)) +

1

t+ 1
γt, (39)

where λ is the learning rate and γt is given by

γt =
1

Nt
(

Nt∑
j=1

w̃i,t exp(−λlt(θi,t))). (40)

In the next theorem, we give an upper bound on the regret
of the losses of the aggregated estimation in competition with
the losses of an arbitrary expert selection sequence.

Lemma 1. When the update in (39) is used with λ = 2M−2,
we have the following upper bound on our cumulative loss,
which is

T∑
t=1

lt(θt) ≤−
1

2
M2 log(NT γT ) (41)

where γT is as in (40).

Proof. Using (22), we see that the square of the derivative of
the loss function in (20) is bounded as(

dlt(θt)

dθt

)2

≤ 1

4
. (42)

Moreover, from (23), we see that the second derivative is lower
bounded as

d2lt(θt)

dθ2t
≥ 1

2M2
. (43)

Hence, the loss function in (20) is λ-exp-concave for

λ =
2

M2
. (44)

Using (37) and the fact that the loss functions lt(·) are λ-exp-
concave, we can write

e−λlt(θt) ≥
Nt∑
i=1

wi,te
−λlt(θi,t). (45)

By taking the logarithm of both sides and dividing by (−λ),
we acquire the following upper bound on the loss we incur at
time t

lt(θt) ≤ −
1

λ
log

(
Nt∑
i=1

wi,te
−λlt(θi,t)

)
. (46)

We use the definition in (38) inside the logarithm in (46),
which gives

Nt∑
i=1

wi,te
−λlt(θi,t) =

∑Nt

i=1 w̃i,te
−λlt(θi,t)∑Nt

i=1 w̃i,t
. (47)

We substitute in (39) to get

Nt∑
i=1

wi,te
−λlt(θi,t) =

∑Nt

i=1 w̃i,te
−λlt(θi,t)∑Nt

i=1
t−1
t w̃i,t−1e

−λlt−1(θi,t−1) + 1
t γt−1

(48)

=

∑Nt

i=1 w̃i,te
−λlt(θi,t)∑Nt−1

j=1 w̃j,t−1e−λlt−1(θj,t−1)
(49)

Observe that the denominator of (49) at time t corresponds to
the numerator of (49) at time t − 1. Hence, the sum of (46)
from t = 1 to T is upper bounded by

T∑
t=1

lt(θt) ≤−
1

λ
log

(
NT∑
i=1

w̃i,T e
−λlT (θi,T )

)
, (50)

≤− 1

λ
log(NT γT ), (51)

and using the fact that λ = 2M−2 conclude our proof.

Even though we have an upper bound on the regret in
respect to an arbitrary or best algorithm selection, we still
need to provide further insight into what this result means. To
this end, we next provide an upper bound that encompasses
γT .

Lemma 2. We have the following bound in terms of the losses
of an arbitrary sequence of experts {i1, i2, . . . , iT } (such that
it ∈ {1, 2, . . . , Nt}), which is given by

−M
2

2
log(NT γT ) ≤

T∑
t=1

lt(θit,t) +
1

2
ŜM2 log(NTT ) (52)

where Ŝ , 1 +
∑T
t=2 1it 6=it−1

.

Proof. We point out that because of the recursive calculation
of w̃i,t coming from all possible algorithm transitions, the sum
inside the logarithm in (41) includes all algorithm transition
variations possible. Hence, the total incurred loss is actually
upper bounded by

NT γT =(

NT∑
i=1

w̃i,T exp(−λlT (θi,T ))) (53)

≥
T∏
t=1

e−λlt(θit,t)

(
T∏
t=2

Pt(it−1, it)

)
, (54)
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for some index set {i1, i2, . . . , iT } (it ∈ {1, . . . , Nt} for all
t ∈ {1, 2, . . . , T}), where

Pt(it−1, it)

{
t−1
t , if it = it−1
1
tNt

, if it 6= it−1
, (55)

from the equations (39) and (40). Thus, we have

NT γT ≥
T∏
t=1

e−λlt(θit,t)

(
1

T

(
1

NTT

)Ŝ−1)
. (56)

where Ŝ , 1 +
∑T
t=2 1it 6=it−1 . This gives us

− 1

λ
log (NT γT ) ≤

T∑
t=1

lt(θit,t) +
Ŝ

λ
log(NTT ) (57)

and the fact that λ = 2M−2 conclude our proof.

In our algorithm, we create our experts such that we start
the kth expert at time 2k−1 and reset every 2k time indices.
Hence our experts are created (or started) at times t ∈
{1, 2, 4, 8, 16, . . .} and they reset every {2, 4, 8, 16, 32, . . .}
time indices. As an example, the 4th expert is started at time
t = 8 and it resets at times t ∈ {24, 40, 56, . . .}. Thus, for
each Ŝ time segments, we run the algorithm in Section III,
which gives the following regret bound.

Lemma 3. We have
T∑
t=1

lt(θit,t) ≤M2Ŝ log

(
2T

Ŝ

)
+

T∑
t=1

lt(θ
∗
st), (58)

where M is an upper bound on the estimations θi,t and Ŝ is the
number of time segments, θ∗s is the best parameter estimation
for sth segment, and st is the segment number of the time
index t.

Proof. Let Ŝ be the number of time segments, where each
time segment s has length ts and starts in the time index ta,s
and ends in the time index tb,s for s ∈ {1, 2, . . . , Ŝ}. Let the
best expert in each segment s be the (is)

th expert. Then, we
have

T∑
t=1

lt(θit,t) =

Ŝ∑
s=1

tb,s∑
t=ta,s

lt(θis,t). (59)

Since we use the algorithm in Section III, using Theorem 1
gives

T∑
t=1

lt(θit,t) ≤
Ŝ∑
s=1

M2 log(2ts) +

tb,s∑
t=ta,s

lt(θ
∗
s)

 , (60)

where θ∗s is the optimum parameter for the sth segment. From
the concavity of log(2x), we get

T∑
t=1

lt(θit,t) ≤M2Ŝ log

(
2T

Ŝ

)
+

T∑
t=1

lt(θ
∗
st), (61)

where st is the segment number of the time index t and
conclude our proof.

After Lemma 3, we now have an upper bound on the
cumulative loss of an arbitrary sequence of expert selections

in terms of the losses of the best parameter estimation at time
t. With the use of Lemma 1 and Lemma 2 in a successive
manner, we can provide an upper bound on the cumulative
loss of our parameter estimations in terms of the losses of the
best estimations.

Theorem 2. We have

T∑
t=1

lt(θt) ≤M2Ŝ log

(
2T

Ŝ

)
+

1

2
ŜM2 log(NTT ) +

T∑
t=1

lt(θ
∗
st),

(62)

where M is an upper bound on θt, Ŝ is the number of time
segments and NT is the number of parallel running experts
at time T .

Proof. Combining Lemmas 1, 2 and 3, gives us the result and
concludes the proof.

Suppose we have C contractions in total that start at times
ta,c and end at times tb,c for c ∈ {1, 2, . . . , C}. Thus, in
total, the number of time segments are upper-bounded by
2C + 1, which consists of either all contraction samples or
all noise samples. Let ts for s ∈ {1, 2, . . . , 2C + 1} be the
length of a such time segment. At any given time inside these
intervals, we want to switch to the expert with the greatest reset
period to make as little switch as possible. In the worst case
(depending on the start of the time segments), we will need
to start from the expert with the least reset period and move
our way up from there (i.e., switch to the 1st expert then 2nd

and then 3rd etc.). Hence, let Ns be the number of switches
(number of distinct parallel running algorithms used) during
the sth time segment (with length ts). With this knowledge,
we next provide a lemma that gives a bound to the number of
switches our algorithm makes (Ŝ) in terms of the number of
contractions C.

Lemma 4. We have the following result

Ŝ ≤ (2C + 1) log2

(
T

2C + 1

)
, (63)

where C is the number of contractions and Ŝ is the number
of switches our algorithm makes between the parallel running
algorithms.

Proof. For the sth time segment with length ts, let us have

ts =

Ns−1∑
s′=1

2s
′
+ bs, (64)

where 1 ≤ bs ≤ 2Ns and Ns is the number of switches our
algorithm needs to make in the sth segment. We also have

1 ≤ bs ≤ 2Ns ≤ ts, Ns ≤ log2 ts, (65)

from (64). Here, we use the nth expert for a duration of 2n

and the (Ns)
th expert for a duration of bs time. Let Ŝ be the
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total number of switches we make between our experts in the
time horizon for {it}Tt=1. We have

Ŝ =

2C+1∑
s=1

Ns, (66)

≤
2C+1∑
s=1

log2(ts), (67)

≤(2C + 1) log2

(
T

2C + 1

)
, (68)

from (65) and the concavity of the logarithm function, which
concludes our proof.

Using Theorem 2 and Lemma 4, we next provide a theorem
that bounds our cumulative regret for a time horizon T .

Theorem 3. We have

RT,S ≤7M2(2C + 1) log2(2T ), (69)

where M is the upper bound of our estimation, and C is the
number of contractions on the time horizon.

Proof. For a length T run of our algorithm, the total number of
experts will gradually increase but never exceed log2(T ) + 1.
Thus, we have

NT ≤ log2(2T ). (70)

Thus, using Theorem 2, Lemma 4 and inequality (70) together,
we have
T∑
t=1

lt(θt) ≤M2(2C + 1) log2

(
T

2C + 1

)
log

(
2T

2C + 1

)
+

1

2
(2C + 1)M2 log2

(
T

2C + 1

)
log(log2(2T )T )

+

T∑
t=1

lt(θ
∗
st). (71)

Since C ≥ 0 and log2(2T ) ≤ T for T ∈ {1, 2, . . .}, (71)
becomes
T∑
t=1

lt(θt) ≤M2(2C + 1) log2 (T ) log (2T )

+
(2C + 1)M2

2
log2 (T ) log(T

2) +

T∑
t=1

lt(θ
∗
st),

(72)

≤ 2

log(2)
M2(2C + 1) log2(2T ) +

T∑
t=1

lt(θ
∗
st),

(73)

≤7M2(2C + 1) log2(2T ) +

T∑
t=1

lt(θ
∗
st). (74)

Therefore, our cumulative regret up to time T is given by

RT,S ,
T∑
t=1

lt(θt)−
T∑
t=1

lt(θ
∗
st),≤ 7M2(2C + 1) log2(2T ),

(75)

which concludes our proof.

V. COMPARISONS

In a sequential EMG signal consisting of C contractions
and 2C + 1 time segments, let ta,s, tb,s and σ2

s,∗ be the start
time, the end time and the power level of the sth time segment
respectively. Against the all powerful oracle, which knows ta,s,
tb,s and σ2

s,∗ for all s ∈ {1, 2, . . . , 2C+1}, our algorithm can
achieve a log-loss regret bound of

RT ≤ 7M2(2C + 1) log2(2T ), (76)

with a computational complexity logarithmic in time horizon
T . We observe that our regret result is linear in C (the number
of contractions) and logarithmic-squared in time horizon T .
From the definitions of the asymptotic notations in Section
II-D, we observe that our regret is O(C log2(T )) and Õ(CT ε)
for all ε > 0. By an abuse of notation, we write this as Õ(C).

We compare the performance of our algorithm with two
weaker oracles. The first one knows the contraction times,
i.e., ta,s and tb,s but does not know the power level of the
contractions, i.e., σ2

s,∗. The second one knows the power levels
σ2
s,∗, but does not know the contraction start and end times
ta,s and tb,s.

A. Oracle with Timing
If the oracle knows the start and end times ta,s, tb,s of the

time segments s ∈ {1, 2, . . . , 2C+1}. It can directly estimate
the power level σ2

s,∗ in each segment individually. For this
purpose, one can use various methods, which includes the
maximum likelihood and follow-the-leader based approaches.
Such approaches produce O(log(T )) regret for a time hori-
zon T [34], which is minimax optimal. Since in each time
segment the algorithm restarts, the cumulative regret will be
O(C log(T )) and consequently Õ(C), which is also minimax
optimal. This oracle has a constant time complexity, i.e., O(1).

B. Oracle with Power Level
If the oracle knows power levels σ2

s,∗ of the time segments
s ∈ {1, 2, . . . , 2C + 1}, it can use a mixture of experts based
approach where each expert uses one of the known variances
σ2
s,∗, which will achieve a regret bound of O(C log(T )) [37],

and consequently Õ(C), which is minimax optimal. This
oracle will have a time complexity of O(C) since it runs in
parallel 2C + 1 number of algorithms.

VI. CONCLUSION

In this paper, we introduced a completely adaptive contrac-
tion detection and tracking algorithm whose performance is
similar to the oracles that have the timing or power level
information of the contractions in hindsight. Our algorithm
has a computational complexity that is only logarithmic in
time. Hence, our algorithm is suitable for real time analysis.
Moreover, even without any knowledge about the contractions,
our guaranteed regret results for any observation sequence,
makes our algorithm robust against noisy, chaotic or even
adversarial environments. The regrets of both of these oracles
(with timing or power level information) are slightly better
than us by only a logarithmic in time factor in the Big-O
notation and same with us in the Soft-O notation. Hence, our
algorithm exhibits near optimal performance rates.
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